### Quick description

Suppose we want to estimate a sum

where the sequence is a monotone sequence of non negative real numbers and are real numbers. Later we can let for example and likewise but let us keep finite for the moment. In this case is a standard tactic to look for a real function with the same kind of monotonicity as the sequence , such that for all the we are interested in. Then we have

Usually the choice of the function should be obvious by looking at the sequence . If for example the sequence is explicitly given then the first obvious choice would be to replace the discrete parameter with a continuous variable and look at the resulting function .

### Prerequisites

calculus

### Example 1

Let us look at the partial sums of the harmonic series

The sequence is a strictly decreasing sequence of positive numbers. Taking we recover the well known estimate

### Example 2

One can use the same technique to prove that for a positive real number , the **over-harmonic series**

converge exactly when and we have the estimate

whenever .

5 years 19 weeksago5 years 27 weeksago5 years 28 weeksago6 years 5 weeksago6 years 26 weeksago